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A B S T R A C T   

The Physical Unclonable Function (PUF) is a hardware block which exploits the inherent process variations 
introduced during manufacturing to assign a unique fingerprint for each physical entity. This feature enables a 
low-cost authentication mechanism for connected devices, which is easy to evaluate but hard to predict. In this 
paper, we develop a low-cost PUF-based authentication mechanism called DC-PUF for resource-constrained IoT 
devices which can resist against machine-learning attacks. A new strategy known as the dependency chain (DC) 
is employed by which the response in each clock is dependent not only on the current challenge but also on the 
previous responses. This mechanism which takes advantage of both randomization and dependency chain 
hardens the ability to clone or predict the PUF instance by obfuscating the correlation between challenge- 
response pairs. Moreover, we propose a CNN-based attack scenario by which the existing PUF structures 
cannot resist while yielding more than 95% of prediction accuracy. The experimental results signify that unlike 
the existing PUFs, more than 58% of prediction accuracy cannot be reached when a sophisticated CNN-based 
attack is conducted to the DC-PUF, even with a large data-set. Also, the False-Negative rate is about 1%, in 
average, for three-bit mismatches in the receiving response in the presence of channel variations, whereas the 
False-Positive rate remains zero. Moreover, the proposed DC-PUF incurs lower hardware complexity and 
reasonable reliability and randomness compared to the existing PUF structures.   

1. Introduction 

Nowadays, different types of connected devices in modern systems 
communicate with each other without supervision, and these connec-
tions are expanding every day, which makes them the vulnerable targets 
to violate the privacy and integrity of the systems. Therefore, hardware 
security has become a major challenge and various types of attack and 
counteraction method have been introduced. Authentication, integrity, 
availability, and confidentiality are four fundamental security mea-
surements that should carefully be taken into account by designers and 
engineers in different stages of the system’s life time. However, the 
stringent limitations in hardware resources and power requirements 
restrict the hardware implementation of standard key primitives or 
hashing mechanisms, especially for resource-constraint IoT devices 
(Shabani and Alizadeh, 2020). This issue exposes a major security 

challenge in the existing application which employs cheap yet insecure 
devices. This situation is compounded by the fact that the underlying 
hardware can be maliciously modified by hardware Trojans which can 
be inserted by the untrusted entities in different IC design or 
manufacturing processes (Shabani and Alizadeh, 2021) (Sabri et al., 
2021) (Khormizi et al., 2022). As IoT devices are typically limited in 
power and hardware resources, Physical Unclonable Functions (PUFs) 
have become very popular for realizing lightweight secure authentica-
tion mechanisms (Khormizi et al., 2022) (Trout and Betts, 1988). Unlike 
the conventional cryptographic primitives, the PUF mechanism no 
longer needs a pre-shared secret key to be hard-coded in target devices 
or secure key sharing between two communication parties. Therefore, 
the inherent vulnerability which originates from key-hacking or spoof-
ing is not present when the PUF mechanism is employed. 

The concept of PUF-based authentication which exploits the unique 
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and inherent device characteristics or the impairment of communication 
channel was the ground-breaking idea in system security. It is already 
found that the implementation of hash functions such as SHA-1 (Secure 
Hash Algorithm) takes thousands of gates and require thousands of clock 
cycles for operation (Maes and Maes, 2013) (Feldhofer et al., 2004), 
which is not tolerable for most of IoT devices and applications. The PUF 
mechanism promises a secure and lightweight authentication for 
resource-constraint devices and eliminates some drawbacks and 
vulnerability issues such as large footprint, key sharing, or side-channel 
attacks, which are already present in traditional authentication 
methods. The silicon or circuit-based PUFs structures offer a simple 
alternative acting as a lightweight fingerprint of a hardware device 
(Amsaad et al., 2021). A silicon-based PUF extracts the secrets from a 
complex physical function by taking advantage of uncontrollable pro-
cess variations resulting from the fabrication processes (Gao et al., 
2016). It benefits from the presence of the process variations to generate 
the unique responses corresponding to the incoming input challenges 
called the CRPs (Challenge Response Pairs). Therefore, due to the 
inevitable process variations, building a PUF is straightforward, but it is 
notably impossible to replicate even by the same manufacturer. In fact, 
as the PUF is firmed on the ground of inherent physical characteristics, 
an ideal PUF is inherently immune to the physical attacks that can be 
exploited on the underlying hardware. Nevertheless, most of the existing 
PUFs can be neutralized by simple Machine Learning (ML) algorithms 
with limited data-set due to the high correlation between its inputs and 
outputs (Gao et al., 2016) (Ruhrmair et al., 2013). Accordingly, many 
researches till date have given some idea to camouflage the relation 
between inputs and outputs of the PUF structures. 

Over the last few decades, many studies have focused on the PUF 
concepts, and several PUF structures were proposed (e.g., Arbiter PUF 
(Ruhrmair and Solter, 2014) (Gassend et al., 2004), SRAM PUF (Hol-
comb et al., 2007), RF-PUF (Holcomb et al., 2007) (Chatterjee et al., 
2018), and Ring Oscillator (RO) PUFs (Suh and Devadas, 2007)). The 
existing PUF structures can be categorized into strong (Lee et al., 2004) 
(Vijayakumar and Kundu, 2015) (Sahoo et al., 2014) and weak PUFs 
(Majzoobi et al., 2009) (Ashtari et al., 2019) (Sahoo et al., 2014) (Tuyls 
et al., 2006). Weak PUFs display only a few challenge-response pairs 
(CRPs) that can be used as a unique key or seed of the traditional 
encryption systems. Whereas, the strong PUFs (e.g., Arbiter PUF) can 
offer a large number of unique CRPs, which makes them a suitable 
candidate for low-cost authentication of devices with limited hardware 
resources. However, the existing strong PUFs have demonstrated some 
vulnerability factors to ML attacks, where attackers can exploit a certain 
number of CRPs from the communication channel to clone the structure 
of the PUF (Ye et al., 2018). In (Rührmair and Sölter, 2014), the authors 
examined the most relevant and comprehensive ML algorithms to model 
the PUF structures and proposed the primary conditions to fulfill the 
need for the practical attacks. Also, the authors in (Ashtari et al., 2022) 
employed different ML algorithms for PUF-based authentication and 
provided the comprehensive recommendations by inspecting the 
application of different classifiers. 

In this paper, we present a new low-cost and scalable PUF structure 
for authentication of the resource-constrained IoT devices offering a 
strong resilience and reliability against the ML attacks. The key idea lies 
in the fact that the correlation between CRPs of a strong PUF can be 
significantly weakened by increasing the dependency between consec-
utive responses. That is, the generated response in a specific clock cycle 
not only depends upon the current challenge, but also on the previous 
responses while the previous response itself depends upon the previous 
CRPs. This chain of dependency binds a strong PUF structure, which can 
stand out against ML attacks while obfuscating the correlation. There-
fore, the ability to predict or classify the responses based on the 
incoming challenges is hardened. In contrast to the previous studies 
focusing on the PUF structures, where the utmost two or four responses 
are associated with each challenge, our proposed PUF can associate 2n 

responses to each challenge, where n is the number of bits that are 

related to the previous response. As the number of related bits from the 
previous response increases, the dependency chain in our PUF structure 
tightens, albeit at the expense of minor area overhead. In fact, this de-
pendency chain increases the possible candidates for responses while 
hardening the prediction or replication processes using ML algorithms. 
In the early days, the simple LR and SVM classifier were able to predict 
the simple PUF structures. However, as the PUFs are getting stronger 
and more complicated, the more sophisticated neural networks are 
required to predict the behavior and clone their functionality. To the 
best of our knowledge, none of the available attack scenarios using ML 
algorithms can effectively classify the nonlinear data with a limited 
data-sets. Accordingly, in this paper, we also propose a deep convolu-
tional neural network (CNN) which is able to deliver higher information 
from the intermediate layers to the dense layers for classification. This 
enables us to better predict the responses corresponding to the incoming 
challenge. The major contributions of this work are as follow:  

• Developing a new low-cost and scalable PUF-based authentication 
protocol called DC-PUF which is able to resist against existing ML 
attacks by employing the dependency chain.  

• Embracing the fact that increasing the dependency between 
consecutive responses in a PUF structure will lead to weaken the 
correlation between CRPs while hardening the prediction or cloning 
process. We called this feature the CRPs’ dependency chain. In fact, 
to predict the response for each challenge, a partial history of the 
previous responses will be required.  

• Presenting a new CNN-based attack scenario that can classify the 
existing PUF structures with high accuracy though our proposed PUF 
structure is relatively immune to be cloned or predicted by this 
attack scenario. 

The rest of this paper is organized as follows. Section II provides a 
detailed background about different PUF structures and their resistance 
against different types of attacks. Section III introduce the proposed DC- 
PUF structure, component, and its application in authentication. The 
experimental results are provided in Section IV, and finally, a compre-
hensive conclusion will be presented in the last section. 

2. Overview of the PUF structures and resiliency against ML 
attacks 

Resistance and reliability to the ML attacks are two major concerns 
for the overall viability of the PUF-based authentication protocols. In 
existing PUF structures, a large number of CRPs can be obtained by 
sharing the path segments between different CRPs. This high correlation 
present between CRPs can be used by attacker as the training sets of ML 
method. So, the pre-trained model can predict the expected responses 
with high accuracy. It is found in (Ruhrmair and Solter, 2014)that the 
CRP of the Arbiter PUF yields more than 99% of prediction accuracy. 
They achieved a 99% prediction rate by the Logistic Regression (LR (to 
model the Arbiter PUF with a maximum of 39 × 103 CRPs in a few sec-
onds. For XOR Arbiter PUF, 99% accuracy is achieved with 500 × 103 

CRPs in 19 h. On the other hand, the research presented in (Wen and 
Lao, 2018) offered a new attack scenario by using the active learning 
techniques. They showed that the active learning could notably improve 
the learning efficiency of PUF under attack. By taking advantage of the 
support vector machine (SVM) method, they were able to use a 64-stage 
MUX-PUF with 200 CRPs to model the attack. In (Mispan et al., 2018), a 
challenging permutation is offered to increase the ML attack resistance 
of Strong PUFs, which can decrease the prediction of Arbiter-PUF re-
sponses to less than 70%. In (Delvaux, 2019), the authors conducted a 
detailed study by applying an efficient impersonation attack to five 
candidate Arbiter-based PUF authentication protocols. Following that, 
the authors in (Delvaux et al., 2017) analyzed the practicality and se-
curity measurement of 21 PUF-based authentication protocols, which 
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was finally concluded that only six candidates could survive from the 
impersonation attacks. As a result, the majority of the existing PUF de-
signs are prone to modeling attacks with the aim of ML techniques. 

Over the past decade, different PUF structures have been presented, 
all of which sought to improve the security in the authentication debate. 
In the following, some of the best PUF models such as Slender PUF 
(Majzoobi et al., 2012), Poly-PUF (Konigsmark et al., 2016), R–PUF (Ye 
et al., 2016) and OB-PUF (Gao et al., 2016) are examined. Fig. 1 shows 
the circuit diagram of basic Arbiter PUF with n-bit challenge [C1,C2,…,

Cn] and 1-bit response r. The transition from challenge to response may 
propagate in two different paths. The Arbiter PUF determines how the 
incoming challenge propagates through these two pathways using 
multiplexers until it reaches to the destination flip-flop. If the transition 
reaches D earlier, the response is 1; otherwise, it will be 0. Since the 
pathway delays in the multiplexer are affected by the presence of pro-
cess variations during the manufacturing process, predicting and clon-
ing them before and after manufacturing is too tricky. Generally, there 
are 2n CRPs for the basic arbiter PUF while different parts of multi-
plexers are shared between different CRPs, resulting in a high correla-
tion between CRPS. This issue provides a great opportunity for attackers 
to perform the modeling attacks, which are able to predict the unknown 
CRPs from the known ones. In 2012, another PUF model known as the 
Slender-PUF was proposed using the random bits to empower PUF 
resiliency as shown in Fig. 2 (d). Unlike the Arbiter-PUF, where there 
exists m bits of response for each challenge, the response of slender PUF 
incorporates 2m bits, leading to hardening the prediction process. 
However, in 2014, the slender PUF was found to be vulnerable against 
an ML-based evolution strategy (Becker and Kumar, 2014). 

In 2016, another PUF structure called Poly-PUF was presented in 
(Konigsmark et al., 2016) which uses the TRNG unit to generate random 
bits. The different random bits generated by the TRNG unit are XORed 
with the incoming challenge and the generated response as shown in 
Fig. 2(a). Unfortunately, in this strategy, no attention has been paid to 
the hamming distance (HD) of consecutive challenges. This weakness 
led to the successful attack in (Delvaux, 2019)with more than 90% ac-
curacy by using a neural network with only single neuron. During the 
same period, the OBPUF model was presented by (Gao et al., 2016) 
which incorporates a challenge control unit to inject two different 
pre-determined challenge patterns into the incoming challenge. Ac-
cording to the TRNG output, one of the 5-bit challenge patterns is 
randomly injected into the incoming 64-bit challenge, and its results are 
fed to the parallel arbiter PUFs, as shown in Fig. 2 (b). The main 
weakness in this protocol is that there exist some cases where the same 
3-bit response (nominal value) is generated for different challenge pat-
terns. In fact, the response does not react to the change in the challenge 

patterns. Accordingly, in 2019 authors in (Delvaux, 2019) extracted all 
the existing nominal values and used them to train the LR model with 
85% of accuracy. In the next step, they achieved more than 90% of ac-
curacy by using the previously trained LR model as the De-obfuscation 
tool, which gathers more data with low HD in respect to the predicted 
outputs. 

In 2017, a new protocol known as RPUF was presented which in-
cludes two operation modes controlled by a TRNG unit as shown in 
Fig. 2(c). The incoming challenge may be entirely inverted or directly 
supplied to the linear-feedback shift register (LFSR) block according to 
the random bit generated by TRNG unit. The LFSR block can help a 
single arbiter PUF to generate n-bit responses from a single challenge 
which eliminates the need for duplicating the arbiter PUFs. In order to 
empower the resistance, the RPUF can use two random bits resulting in 
four different operation modes. The authors claimed that the RPUF 
could not be attacked with more than 75% accuracy, although an 
alternate learning strategy could break down the resistance of this 
method by around 90% of accuracy in 2019 (Delvaux, 2019). The ma-
jority of the methods presented here were trying to minimize the cor-
relation between CRPs as well as camouflaging the hyperplanes by using 
the different fixed challenge patterns which are randomly selected by 
some random bits. The history of research reveals that they eventually 
have failed to resist against the sophisticated neural networks. Never-
theless, our approach follows a different path in lowering the CRPs’ 
correlation by exploiting the temporal correlation between consecutive 
responses in addition to the randomization of challenge patterns. This 
strategy enables us to employ a secure and lightweight authentication 
protocol which can resist even against deep CNN-based attack scenarios. 

3. The proposed PUF-based authentication protocol (DC-PUF) 

According to the case studies, there is a pressing need to design a 
strong and lightweight PUF-based authentication protocol resistant to 
the modeling attacks conducted by the ML algorithms. The main pur-
pose of presenting the current PUF model is to prevent the learning 
process to predict the correlation between challenges and responses; 
thus, preventing from an unauthorized malicious node to exploit the 
identity replication attack. In this way, the attacker fails to clone the 
legitimate nodes and the authentication session is denied by the server. 
The proposed PUF-based authentication flow includes two phases of 
enrollment and deployment. The enrollment phase is performed only 
once for each legitimate node. In this phase, the server collects a large 
number of challenge-response pairs corresponds to the target node to 
train its authentication model. Afterwards, in the deployment mode, the 
server regenerates the possible responses related to the incoming chal-

Fig. 1. General structure of basic Arbiter PUF.  
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Fig. 2. Architecture of different PUFs; a) Poly-PUF, b) R–PUF, c) OB-PUF, and d) Slender-PUF.  

Fig. 3. The block diagram of the proposed PUF-based authentication.  
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lenges and checks whether the receiving response from the requested 
node relatively matches with the predicted one. Fig. 3 shows the block 
diagram of the proposed PUF-based authentication method. The dia-
gram consists of four main blocks including DC-module, arbiter PUF, 
LFSR, and the controller unit. Unlike the basic arbiter PUFs by which 
only one bit of response can be generated, many applications for secure 
authentication require multi-bit responses. There exist two solutions to 
extend the responses of basic arbiter PUF, one is to use multiple con-
current arbiter PUFs (e.g., OBPUF, Poly-PUF) and the second one is to 
use the LFSR block to generate multiple sub-challenges from a single 
challenge and use a single arbiter PUF to generate multiple 1-bit re-
sponses for each sub-challenge (Suh and Devadas, 2007) (Majzoobi 
et al., 2008a). In our design, we used the second solution as it incurs less 
design overheads. Before any request, the device needs to introduce its 
identity to the server. The device identity (ID) in our scheme is gener-
ated by the PUF instance as shown in Fig. 3. To generate the ID, the 
controller issues the ID Gen signal and a pre-specific pattern is applied to 
the LFSR module using the Set and Clr inputs. Then, the PUF instance is 
fed with the specific pattern of LFSR, and it generates a unique n-bit ID 
which can be hardcoded in the device before installation. The generated 
ID will be stored and used for the future request to the server. Even with 
the same input patterns, different IDs will be obtained for different de-
vices using proposed scheme. In the following, a detailed description 
about constituent blocks of the proposed DC-PUF is provided. 

3.1. The proposed DC-PUF architecture 

3.1.1. DC-module 
The proposed DC-module is responsible for camouflaging the hy-

perplane with modifying some selected bits of an incoming challenge as 
shown in Fig. 4. The modification process on the challenge’s bits is 
performed in two steps. The first step is to inject a random bit which 
inverts some bits of the incoming challenge (i.e., randomization step) 
and the second step is to skip some challenge’s bits and replace them 
with some bits of the previous response (dependency step). In the DC- 
module, some bits of the incoming challenge are supplied to the DC- 
elements while the rest of them are bypassed the DC module and are 
directly connected to the LFSR module in a parallel manner as shown in 
Fig. 4. The challenge’s bits which are connected to the DC-elements may 

be inverted or intact according to the status of a random bit which is 
generated by the RNG module (randomization step). The multiplexer 
unit in DC-element decides whether to pick up the challenge’s bit itself 
or the inverted bit according to the status of Sel signal. If the Sel signal is 
activated, all the challenge’s bits are directly passed to the LFSR module 
without any modification (i.e., DC-elements are skipped). In fact, this 
condition activates the enrollment phase, where the server needs to 
acquire the original responses to the plain challenge. In our scheme, 
some challenge’s bits connected to the DC-elements are substituted by 
some bits of the previous response (dependency step). It is up to the 
designer to decide which and how many of the challenge’s bits to con-
nect to the DC-elements and which ones need to be replaced by the 
previous response. 

3.1.2. Random number generator (RNG) 
The RNG block is responsible for injecting randomness into the 

incoming challenges. The single random bit from the RNG generates two 
states, resulting in two possible responses for each challenge. Note that 
the server does not have any clue about the random logic generated by 
the RNG block, so it will consider two possible responses for each 
challenge and check which of the possible responses have the most 
similarity with the receiving response. The SPIO register in the proposed 
DC-PUF serially stores the 1-bit responses for each sub-challenge in 
every clock cycle and sends all the m-bit responses in parallel to the 
server at once. Moreover, using the SPIO register, some response’s bits 
are feedbacked to the DC-module to create the dependency chain. In 
summary, the server only needs to generate two possible responses for 
each challenge according to the logic of a single random bit (one for bit 
‘0’ and the other for bit ‘1’) and compare them with the receiving 
response. The comparison process repeats once for each generated 
response and the response with the least difference in range of pre-
defined ℰ will be regarded as the acceptable answer, the previous 
response is updated in both server and client sides, and the authenti-
cation is passed. This matching process is sufficient to decide whether 
the authentication is passed or rejected. The identification accuracy 
highly depends upon the range of ℰ. As the ℰ range increases, the less 
false-negative rate will be achieved, but the increase in ℰ increases the 
false-positive rate as there may be some malicious nodes that are 
wrongly identified as the legitimate due to the presence of channel 

Fig. 4. The proposed DCT-PUF and DC-Elements.  
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disturbance. 

3.1.3. Arbiter PUF 
In the arbiter PUF, an input signal T can pass one of the two different 

pathways according to the status of the incoming challenges. In fact, the 
input challenge is connected to the multiplexers that decide which path 
is selected for the propagation of input signal T. At the end, the arbiter 
unit which is a D-type flip-flop determines the output signal based on the 
arrival time of its inputs. If the transition on D comes first the output will 
be one; otherwise, the output will be zero. Since every path-delays 
related to the arbiter PUF are highly affected by the presence of pro-
cess variations, the output prediction and cloning of the model will be 
difficult. 

3.2. The proposed enrollment mechanism 

In the enrollment phase, the server generates N number of n-bit 
challenges and sends them to the target device. We recommend to 
perform this operation in a secure local network since there is a risk of 
man-in-the-middle (MitM) attacks in a remote access. To enroll a given 
device, the Sel signal of multiplexers in DC-elements is set for the first 
time to enable the n-bit challenges directly pass through the DC- 
elements without any modification. In this case, the arbiter-PUF has a 
direct access to the unmodified sub-challenges, and the server can 
capture the plain responses. Next, the P en signal is asserted by the 
controller to let the LFSR module picks up the plain challenge in parallel. 
Then, the P en is de-asserted, and the LFSR generates m sub-challenges 
in m clock cycles for every plain challenge and delivers them to the 
arbiter-PUF in parallel. 

The arbiter-PUF generates 1-bit response for every n-bit sub- 
challenge and transfers the generated response’s bits serially to the 
SPIO register. This process is repeated for all the challenges, and the 
generated responses are sent to the server. After this process, the Sel is 
de-asserted to disable the direct access to the arbiter-PUF. Next, a new ω 
model for every device in the server is trained by using the challenge- 
response pairs (CRPs) to predict the relation between CRPs. Before 
that, the internal structure of the DC-module of the target device is 
defined for the model in the form of a specific modification function to 
let the model simulate the modified challenge. This function specifies 
which of the challenge’s bits are modified by the DC-elements and which 
of the response’s bits are feedbacked to the input challenge. Finally, an 
interface for direct access to the CRPs have to be irreversibly disabled. In 
fact, the physical access to the plain CRPs should be permanently 
disabled before device installation. This can be done by burning the 
irreversible fuse, so an attacker is not able to replicate the trained model 
(Majzoobi et al., 2012). 

3.3. The proposed authentication/deployment mechanism 

Algorithm 1 describes the client-server authentication protocol. At 
the beginning of a session, the device sends an authentication request to 
the server, including the Device-ID. The server receives the request and 
sends back n-bit random challenge (C ) to the device. In both client and 
server sides, the device ID is regarded as the previous response (Respre) 
when the first session is performed, or the connection resets. The client 
receives the challenge C and modifies it by inverting some challenges 
bits according to the random number (Iinv) while some of the challenges’ 
bits are replaced by the Respre, resulting in a modified challenge C ′ at the 
client side. Next, the P en of the LFSR block is enabled to let the LFSR 
captures the modified challenge in parallel, then at the next clock it will 
be disabled. The LFSR block generates m sub-challenges (C x j) for every 
modified challenge and delivers them to the arbiter-PUF to generate 
m-bit response R. The generated response R is sent to the server. The 
server receives the response while it generates two possible challenges 
(C ′

0, C
′
1) for Iinv = 0 and Iinv = 1. Note that the server knows the 

modification function (DC-Module-Sim (C , Respre, 0 /1)) of the client 
from the enrollment phase. Therefore, it can modify the challenge as the 
client already did. However, the server does not know the random bit 
(Iinv); thus, it requires to generate two possible challenges, resulting in 
predicting two responses (R′

0, R′
1). In order to decide whether the 

authentication is granted or denied, the server calculates the minimum 
hamming distance (HD) of two predicted responses in respect to the 
received response R. If the minimum HD is lower than a pre-specified 
fault tolerance (ε), the authentication is granted and the predicted 
response with minimum HD is selected as the Respre; otherwise, the 
request is denied. To prevent from the noise propagation in the next 
authentication phases, we select the predicted response with minimum 
HD rather than the received response to be replaced with the previous 
response. To clarify the authentication process, the server-client 
communication flowchart is depicted in Fig. 5. 

Algorithm 1 
Client-Server Authentication Process  

Client Side: 

1 Checks whether the connection is the first session? If yes: 
Respre = Device-ID//Respre: previous response 
Sending connection request with Device-ID to server ▸▸▸ 

3 Receiving C Challenge from Server ◄◄◄ 
Iinv = Generate 1-bit random number by RNG block 
C

′
= DC-Module (C ; Iinv,Respre)//generate modified challenge from incoming 

challenge, previous response, and RNG output//Set P en←1; //LFSR captures 
the modified challenge C ′ 

Reset P en←0//LFSR disables the parallel capturing foreach bit j of m-bit 
response R do: 
C x j = Generate Sub-Challenge using LFSR block 
Rj = Generate Response bit of C x j using Arbiter-PUF 
Respre = R//update the previous response with a new response 
Sending generated response R to server ▸▸▸ 

Server Side: 

2 Receiving connection request with Device ID ◄◄◄ 
Checks whether the connection is the first session? If yes: 
Add Respre = Device-ID 
C = Random number Generation (n)//generate n-bit challenge 
Send C : n-bit challenge to Device ▸▸▸ 

4 Receiving generated m-bit response R from client◄◄◄ 

[C
′
0,C

′
1] = DC-Module-Sim (C ,Respre,0 /1)//generate two possible challenges 

based on 1-bit random number 
[R′

0,R′
1] = Predict (C ′

0,C
′
1)//predicts two possible responses R′

0,R′
1 from trained 

model 
ꜧ = min (HD (R,R′

0), HD (R,R′
1))//calculate minimum hamming distance if ꜧ < ε 

then//ε: a user-defined fault tolerance 
Authentication granted ▸▸▸ 
Respre = HD (R,R′

0) < HD (R,R′
1)) ? R′

0 : R′
1 else 

Authentication denied ▸▸▸  

Fig. 6 shows the timing diagram of the proposed DC-PUF respect to 
the main clock. After the connection request, the input data (i.e., chal-
lenge) to the DC module will be available. Then, the LFSR block accepts 
the modified challenge in parallel by enabling the P en signal for one 
clock cycle. Next, the LFSR en is set to let the LFSR’s registers serially 
shift the modified input challenge. Every shift process in LFSR generates 
a new sub-challenge for arbiter-PUF, resulting in one-bit response. 
Meanwhile, the arbiter-PUF generates a transition on PUF T input (e.g., 
0 → 1, 1 → 0) for every clock cycle. Therefore, one-bit response is 
generated every clock cycle after the first transition on PUF T input. The 
m-bit response is obtained after m + 1 clock cycles when the input 
challenge receives. 

3.4. The CNN-based attack scenario 

In this paper, a new attack scenario based on CNN is proposed, which 
can successfully predict the responses with high accuracy when it is 
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applied to the existing PUF structures. We evaluated various ML tech-
niques such as Support Vector Machines (SVMs), Logistic Regression 
(LR), Artificial Neural Network (ANN), and Convolutional Neural 
Network (CNN) in our experiments. However, the CNN-based model has 
been considered in our study as the basis of the attack strategy since it is 
found to have the superior potential of modeling highly non-linear data. 
Due to the higher prediction accuracy and fast convergence time, a 

resilient back-propagation is considered as the best training algorithm. 
Although the CNN-based attack engine incurs high complexity and 
computational power compared to that of the other classification en-
gines, it can be deployed in a strong server where the trained model is 
located. So, an adversary can mount the malicious nodes by replicating 
the authorized nodes. These malicious nodes can send multiple requests 
to the main server by replying the genuine requests. When the challenge 

Fig. 5. Client-Server authentication flowchart in DC-PUF.  

Fig. 6. Timing diagram of the proposed deployment (authentication) phase.  
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is sent by the server, the malicious node resends the challenge to the 
malicious server and receives the predicted response from the trained 
model, and sends it back to the main server to gain unauthorized access. 
When the authentication is granted, the malicious nodes can exploit the 
Daniel-of-Service (DoS) attacks, or they can be used as the suitable 
infrastructure to acquire vital information and other attack models. To 
achieve higher prediction accuracy from the existing PUFs, we used our 
proposed CNN model, as shown in Fig. 7. The network consists of three 
convolution layers by which the 1-D input data is preprocessed, and the 
unique features are extracted. Next, the extracted features are classified 
by five fully-connected layers. In the first 1-D convolutional layer, 200 
kernels with size 2 are employed using Rectified Linear Unit (ReLU) 
activation function. The input data can be challenges or the pre-
processed challenges. In the next stages, 1-D convolutional network with 
180 kernels and 90 kernels of size 3 and ReLU activation function are 
used, respectively. Next, the intermediate data is supplied to the fully- 
connected layers to be classified. In the first fully-connected layer, the 
Tanh activation function is used to consider the negative values, while 
the next three layers use the ReLU function as the activation function. 

The last fully-connected layer which has an equal size with response 
uses the sigmoid function. In the learning stage, we used the Bina-
ry_Crossentropy as the loss function and Gradient Descent (SGD) as the 
optimizer engine. The results of applying the proposed CNN-based 
attack model on existing PUF structures showed that it can yield 
higher prediction accuracy compared with the LR, SVM and ANN attack 
models. We have achieved more than 95% of prediction accuracy when 
the proposed CNN-based attack model accompanied by the proposed 
preprocessing technique is applied to the OB-PUF. The detailed pre-
processing method and the experimental results will be discussed in the 
next section. 

4. Experimental results 

4.1. Experimental setup 

We have implemented the proposed DC-PUF on Xilinx Zynq7000 SoC 
chip using Verilog description language. To extract the delay of path 
segments within multiplexers of arbiter PUF, we have used the Mon-
tecarlo algorithm and specified the delay variation corners using the 
Gaussian distribution. To do so, the circuit model of the arbiter-PUF in 
transistor-level using H-SPICE software was simulated 1000 different 
times with Montecarlo algorithm to obtain the delay corners of the 
arbiter paths during manufacturing processes. As a result, the mean and 
standard deviation values in the worst-case scenario were obtained M =

52.3ps and σ = 11ps, respectively. In modeling with a gaussian distri-
bution for each path, different values were assigned to simulate the state 
closest to reality. Totally, 100 DC-PUFs are simulated using Python. 
Different attack models including the LR and SVM-based attacks were 
conducted using the scikit-learn library to enable a fair comparison with 
the state-of-the-art PUF structures. In order to better justify the reli-
ability of the proposed authentication method, we have also considered 
the ANN and CNN attack models where they are trained using the Keras 
library(Keras, 2022) with Tensor-Flow backend, Python, and Google 
celebratory. It should be noted that we used different attack models and 
scenarios similar to the models used by state-of-the-arts (Delvaux, 
2019), (Konigsmark et al., 2016) and compare the prediction accuracy. 
Apart from the known attack models such as LR and ANN models, we 
also developed a new CNN-based attack model which is applied to the 
proposed DC-PUF and that of the other methods. The experimental re-
sults signify that the proposed DC-PUF surpasses the existing PUF 
structure in terms of resistance against ML attacks when the previous 
attack models (LR, and ANN) as well as the new CNN model are applied 
to these methods. We also applied the SVM attack model to the propose 
DC-PUF to better highlight its resiliency. 

4.2. Resistance against ML attack models 

Fig. 8 shows the effect of the number of DC-elements used in the 
proposed DC-PUF on resilience against the CNN-based attack model on 
the proposed DC-PUF with 5 × 105 CRPs. According to Fig. 8, the 
number of used DC-elements is defined as the percentage of challenge’s 
bits which are modified by inserting DC-elements. Moreover, it is 
assumed that 90% of the inserted DC-elements are fed with response’s 
bits, and the rest of them (10%) are directly connected to the challenge’s 
bits. The input challenges and output responses are both 64 bits. The DC- 
elements are randomly mounted on the way of the challenge’s bits 
which are intended to modify the incoming challenge to camouflage the 
hyperplane. It is apparent from Fig. 8 that inserting a few DC-elements 
can substantially augment the resilience against the ML attack as well 
as lowering the prediction accuracy, at the expense of extra hardware 
overhead. It is found that even by adding DC-elements to 10% of the 
challenge’s bit (i.e., six DC-elements), the prediction accuracy signifi-
cantly drops more than 20% compared with the direct connecting the 
challenge to the LFSR module. This reduction is about 40% once half of 
the challenge’s bits are equipped with DC-element. It is worth pointing 
out that employing the DC-elements more than 50% of the challenge’s 
bit does not notably drop the prediction accuracy as we are making the 
response more dependent on the previous response rather than the 

Fig. 7. Proposed CNN-Based attack scenario for cloning the PUF structure.  
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current challenge. For example, at 70%, 45 DC-elements are employed, 
where 40 elements are fed with the corresponding response’s bit and 5 
elements are connected to the input challenge. This means 40 bits of 64 
bits (62%) of response are dependent on the previous response and the 
rest of them is dependent on input challenge. It is highly recommended 
to avoid employing DC-element by more than 50% of the challenge’s bit 
to ensure higher resilience as well as lowering the area overhead. In the 
rest of this paper, we will consider 50% of challenge’s bits candidate for 
DC-element insertion, 90% percent of DC-elements are supplied by 
corresponding response’s bits, and all the challenges and responses are 
64 bit long. 

Fig. 9 shows the effect of the number of CRPs on the prediction ac-
curacy of different PUFs when the CNN-based and LR-based attack 
models are conducted on different PUF models. It can be concluded from 
Fig. 9 that even with a large number of CRPs around 106, more than 58% 
prediction accuracy cannot be reached from the DC-PUF. Moreover, 
Fig. 9 compares the results of prediction accuracy of OB-PUF and XOR- 
PUF when they are under attack by CNN and LR-based attack models. In 
order to conduct an efficient attack on OB-PUF by using the CNN model, 
we develop a different attack scenario to eliminate the stage of training 
de-obfuscation tool using LR method while yielding the same prediction 
accuracy (i.e., more than 90%) as previously obtained by (Delvaux, 
2019). We already discussed that the OB-PUF generate 3-bit response for 
each challenge and with this mechanism there are cases where the 
random pattern included in the OB-PUF does not influence on the 
generated response. As a matter of fact, the same 3-bit response is ob-
tained for multiple applications of a fixed challenge and the randomi-
zation process will be neutralized. These challenges are referred to as 
nominal values that can be used against the OB-PUF. In the proposed 
attack model, we extract these nominal values and leverage the one-hot 
categorizing (PotdarT. and C., 2017) to extend all the 3-bit responses 

generated by nominal values into 8-bit response. Next, we used the CNN 
as the classification engine to find the correlation between CRPs. With 
this attack scenario, more than 95% of accuracy can be reached of the 
OB-PUF in the first round of attack with 5000 CRPs. This result is the 
same as previously obtained by (Delvaux, 2019)with the difference that 
they require an additional preprocess where a de-obfuscation tool is 
produced using LR method with 105 nominal values as shown by Fig. 9. 
For dataset larger than 104, the OB-PUF reveals around 95% of predic-
tion accuracy when the proposed CNN-based attack model is applied. 
The same accuracy can also be reached by XOR-PUF when it is under LR 
attack with dataset larger than 105.. 

Table 1 reports the results of prediction accuracy for different PUF 
structures and the proposed DC-PUF when various ML-based attack 
models (e.g., LR, ANN, and CNN) are conducted. To highlight the higher 
resilience of the proposed DC-PUF in respect to the other PUFs, we used 
a much larger CRPs for DC-PUF when conducting attacks. In this 
experiment, the ANN model includes 10 and 30 neurons per hidden 
layers, respectively. In respect to the existing PUFs, it is found that 
proposed DC-PUF achieves higher resiliency (i.e., lower accuracy) when 
applying LR, ANN, and CNN attack models. The accuracy of the DC-PUF 
is 51.55%, 52.56%, and 56.27% for LR, ANN, and CNN respectively. 
This yields a significant drop of accuracy under LR attack around 47.9%, 
43.4%, and 38.4% compared with the XOR-PUF, OB-PUF, and R–PUF, 
respectively. Moreover, we have further conducted SVM attack model 
for DC-PUF, which leads to 50.78% accuracy with 4 × 105 CRPs. In 
summary, we can claim that the proposed DC-PUF can achieve a 
considerable accuracy drop around 40%, on average, compared to the 
recent OB-PUF and R–PUF under LR and CNN-based attack models. We 
have also implemented the DC-PUF on FPGA, and a CNN attack model is 
conducted with 4096 CRPs. The experimental results signify that more 
than 50.38% prediction accuracy cannot be reached on DC-PUF, which 
indicates a promising resistance against ML attacks. 

Fig. 8. The prediction accuracy versus the increase in percentage of challenge bits which are modified by DC-elements.  

Fig. 9. The prediction accuracy versus number of CRPs for different PUF 
structures under different attack scenarios. 

Table 1 
Accuracy results for different PUFs against attack models.  

Attack Model CRPs LR ANN CNN 

Arbiter-PUF 103 99.9% 99.9% 99.9% 
XOR-APUF ( 

Majzoobi et al., 
2008b) 

78 × 103 99% (Ruhrmair 
et al., 2013) 

– – 

Poly-PUF( 
Konigsmark et al., 
2016) 

105 – ≈95% ( 
Delvaux, 
2019) a 

– 

OB-PUF (Delvaux, 
2019) 

104 ≈95% (Delvaux, 
2019)  

≈96% 

OB-PUF (Gao et al., 
2016) 

2 × 105 71.92% (Gao 
et al., 2016) 

– – 

R–PUF (L2) (Ye 
et al., 2016) 

103 ≈90% (Delvaux, 
2019) 

– – 

DC-PUF 4 × 105 51.55% 52.56% 56.27%  

a A pair of single-neuron networks. 
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4.3. Uniformity & uniqueness 

The uniformity is defined as the percentage of 1s among all the re-
sponse’s bits. Ideal uniformity is 50%, indicating that the same number 
of 1s and 0s should be available in the response. The proposed modifi-
cation process on the challenge, including the randomization step and 
dependency chain should not affect too much the uniformity of the 
response. To evaluate the uniformity, we have randomly generated 
2 × 104 challenges of each DC-PUF, and the experimental results of 
average uniformity are provided in Table 2. From Tables 2 and it is 
concluded that the uniformity of the proposed DC-PUF is around 51.57% 
which is higher than the value reported by Arbiter-PUF and R–PUF (Ye 
et al., 2016). Worthwhile to note that to inject the randomness into the 
responses, the R–PUF (Ye et al., 2016) used two-bit random number 
while we only used one-bit random number and still our uniformity 
result is better than R–PUF (Ye et al., 2016). The rationality is that our 
randomness does not only depend on the used random bit, but also on 
the dependency chain and the temporal correlation between the 
consecutive responses. 

The uniqueness accounts the difference in responses generated by 
different PUFs when the same challenge is applied. This term is evalu-
ated as the percentage of different response bits and its ideal value is 
50%. To evaluate this term in DC-PUF, in addition to applying the same 
challenge, the identical sequence of challenge should also be applied to 
different PUFs due to the presence of dependency chain. There exist two 
possible responses for every challenge in DC-PUF owing to the 1-bit 
randomness which is injected by RNG unit. Therefore, the probability 
of finding the identical responses for every challenge is doubled after 
adding the randomization. This probability can be expressed as 2× pm, 
where m is the number of response bits, and p is the probability of 
finding the same single response bit when the same sub-challenge is 
applied to two different arbiter PUFs. The result of uniqueness reported 
in Table 2 implies that although the probability of finding identical re-
sponses is doubled after adding the randomization, the absolute value is 
very small and the uniqueness is close to the ideal value. 

4.4. Hardware complexity & overheads 

Table 3 evaluates the hardware complexity and compares the num-
ber of primary components of different PUFs with 64-bit challenges and 
responses. The R–PUF uses two bits for randomization module in which 
64 inverters and 64 multiplexers are connected to the 64-bit input 
challenges. The LFSR unit includes 64 DFFs to shift 64-bit sub-modules. 
In the arbiter-PUF, it uses 128 multiplexers and one DFF as arbiter unit, 
totally 256 multiplexers and 65 DFFs are included in R–PUF, as reported 
by Table 3. 

In Poly-PUF, the CSD/RSD is input/output module which extends the 
random bits generated by TRNG unit while XORing the extended 
random bits with the challenge or responses. This module CSD in input 
and RSD in output totally requires 128 multiplexers and 128 XORs. 
Authors of Poly-PUF propose two different scenarios for implementing 
the PUF unit, where it can only use one PUF and one LFSR block to 
generate 64-bit responses in 65 clock cycles or multiple parallel PUF 
instances can be realized, and the LFSR unit is no longer required. The 
latter scenario incurs much higher power and design overheads while 
reducing the reliability due to the cross-talk problem between PUF in-
stances. All the PUF instances are collaborated in generating the 
response and one PUF would issue the response to the server, so the time 

taken to generate response bits is shortened to only one clock cycles. To 
conduct a fair comparison, the first scenario is considered for the Poly- 
PUF in which 128 multiplexers and 65 DFFs are required to implement 
the arbiter PUF and LFSR unit, respectively. Totally, 256 multiplexers, 
128 XORs, and 65 DFFs are included in Poly-PUF, as reported by Table 3. 
The next candidate is slender PUF, which uses four-stage XOR-PUFs with 
two 128-bit LFSR units. The two LFSR units are XORed and its 64-bit 
result is fed to the four-stage 64-bit PUF. Each PUF instance includes 
128 multiplexers, and one DFF which totally produces four outputs for 
all stages. Finally, the four outputs of PUFs are XORed to generate a 
single bit response. The slender PUF embeds 128-bit TRNG unit which 
includes 128 multiplexers and 12 DFFs. In overall, the slender PUF in-
cludes 242 DFF, 67 XOR, and 640 MUX, as listed in Table 3. 

The proposed DC-PUF only employs the DC-elements to 50% of the 
challenge’s inputs while 90% of the DC-elements are input with the 
corresponding bits of the previous response. So, the number of DC- 
elements for 64-bit challenge is 32 and each of which includes one 
MUX and one XOR gate. Also, the 64-bit arbiter PUF and LFSR unit 
include 128 MUX+1 DFF and 64 DFF, respectively. In respect to the 
R–PUF and Poly-PUF, the number of MUX required for DC-PUF de-
creases by around 37%. This reduction is significantly higher in com-
parison to the Slender-PUF (i.e., 75%). In terms of the number of DFF, 
the DC-PUF shows a remarkable reduction around 73% compared with 
Slender-PUF, and the required DFF is the same as R–PUF and Poly-PUF. 
Moreover, the number of XOR required for DC-PUF is lower than Poly- 
PUF and no inverter gate is required. As a result, the hardware 
complexity of DC-PUF indicates a favorable decrease in comparison to 
the state-of-the-art PUFs. To better compare the results of hardware 
implementation, Table 4 reports the number of lookup tables (LUT) 
occupied in FPGA for each PUF instance. It is concluded from Table 4 
that the DC-PUF yields a significant reduction in number of LUT around 
73% compared to NB-PUF (Mandel Yu et al., 2014) and Slender PUF. 
Moreover, compared to the recent Poly-PUF, the number of LUTs 
included in the proposed DC-PUF decreases 20%. 

Table 5 presents a qualitative comparison between different PUFs in 
terms of hardware complexity, prediction accuracy, obfuscation, and 
dependency types. According to Tables 5 and it is evident that the 
proposed DC-PUF incurs lower hardware complexity as well as yields 
much lower prediction accuracy under ML attacks. As reported by 
Table 5, the traditional arbiter PUF does not employ any technique to 
obfuscate the correlation between CRPs. Nevertheless, the DC-PUF 
employs 1-level (L = 1) randomization process accompanied by the 
dependency chain. That is, the input challenge is modified based on a 

Table 2 
Experimental results of uniformity and uniqueness.  

Model #CRP bits Uniformity (%) Uniqueness (%) 

Arbiter- PUF 64 50.547% 49.197% 
R–PUF(Ye et al., 2016) 64 51.10% 49.7% 
DC-PUF 64 51.57% 49.23%  

Table 3 
Comparison of hardware complexity of different PUFs.  

PUF 
Model 

R–PUF (Ye 
et al., 2016) 

Poly-PUF ( 
Konigsmark et al., 
2016) 

Slender-PUF ( 
Majzoobi et al., 
2012) 

DC- 
PUF 

XOR 0 128 0 32 
Inverter 64 0 67 0 
MUX 256 256 640 160 
DFF 65 65 242 65  

Table 4 
Number of LUTs required for different components of PUFs.  

Component NB-PUF ( 
Mandel Yu 
et al., 2014) 

Slender-PUF 
(Delvaux, 
2019) 

Poly-PUF ( 
Konigsmark 
et al., 2016) 

DC-PUF 
(Proposed) 

PUF 4× 128 4× 128 128 128 
LFSR 10 10 10 10 
TRNG 128 128 N/A N/A 
CSD/RSD N/A N/A 61 N/A 
DC- 

element 
N/A N/A N/A 32 

Total 650 650 213 170  
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single random pattern and the previous responses, where the previous 
response itself is dependent on the previous challenge and prior re-
sponses. Therefore, it can be concluded that the DC-PUF, in addition to 
the spatial correlation, it also employs the temporal correlation between 
CRPs. The OB-PUF and R–PUF only use L = 1 and L = 2 randomization 
process, respectively, so they only employ the spatial correlation. The 
XOR-PUF uses the redundancy method by duplicating the PUF instances 
(i.e., XOR-mixed arbiter PUF) to an arbitrary extent to relieve the weak 
statistical property of the arbiter PUF. This weak statical property im-
plies that one CRP may reveal information on arithmetically close other 
challenges. 

4.4.1. DC-PUF reliability 
The stability of the PUF is a crucial factor in the reliability of the 

authentication methodology. A PUF that is unstable can lead to the 
inconsistent responses, which can compromise the authentication pro-
cess, and also increase the false-positive and false-negative rates. There 
are several factors that can adversely affect the stability of a PUF, 
including power supply fluctuations and temperature changes. Thus, it is 
important to ensure that the PUF is designed to be stable under different 
operating conditions. First of all, it is worthwhile to note that the base 
architecture of the proposed DC-PUF is an Arbiter-PUF (Ruhrmair and 
Solter, 2014) (Gassend et al., 2004). Experimental results in (Hemavathy 
and Bhaaskaran, 2023) already reported the reliability of the 
Arbiter-PUF for 32-bit and 64-bit challenges which are 99.52%, and 
97.96%, respectively, validating a reliable random output under 
different operating conditions. In the proposed DC-PUF, we aim to 
augment the resilience against the ML-based modeling attacks as well as 
increasing the randomness into the responses. To achieve this, we 
introduce the dependency chain providing a temporal correlation be-
tween consecutive responses which in turn, increases the randomness 
and provides a remarkable resilience against the cloning and modeling 
attacks. To ensure the reliability of the PUF instance, the delay differ-
ence between the upper and lower paths should be significant enough to 
generate a reliable bit. In fact, the chance of bit flip in response increases 
only when the delay between two paths intersects over the operating 
temperature and the path delay difference is small (Hemavathy and 
Bhaaskaran, 2023). Thus, adding the DC elements to the original 
Arbiter-PUF does not affect the path delay difference; thereby, no impact 
on reliability is expected. However, in the proposed DC-PUF, we are 
essentially creating a feedback loop in the Arbiter-PUF to form the de-
pendency chain. That is, some challenge bits are substituted by some 
response bits by employing the DC elements. Therefore, it is expected 
that the reliability of the DC-PUF is lower than the original Arbiter-PUF 
due to the bias amplification caused by the feedback loop. In fact, there 
is a chance that the flipped bit is among the selected response bits for 
forming the dependency chain and the reliability degrades as the 
authentication round continues and dependency chain grows. The 

reliability of PUF can be measured by calculating the Intra-distance 
which is the distance between two responses when a specific chal-
lenge applied twice to one device (El-Hajj et al., 2021), and can be 
expressed as (1): 

HD(Intra)=
1

n(d − 1)
∑d

j=2

∑n

k=1
HD

(
R(i,k),R(j,k)

)
× 100 (1) 

In (1), the average number of unreliable response bits is calculated, 
where d is the total number of devices under evaluation, n is the number 
of response bits, and R(i,k),R(j,k) are the k th bits of i th and j th response 
for the same device under different operating conditions. Accordingly, 
the reliability can be defined as (2): 

Reliability= 100 − HD(Intra) (2) 

Ideal PUF instance with reliability of 100% means the device gen-
erates the same responses for a given challenges despite hostile envi-
ronmental conditions. We performed the reliability analysis on the 
proposed DC-PUF based on the simulation in MATLAB, similar to the 
approach adopted in (Rührmair et al., 2013) (Becker, 2015) (Sahoo 
et al., 2018). In our simulation, we assumed that the delay components 
of the proposed DC-PUF are independent and identically distributed in a 
normal distribution with M = 10 and σ = 0.05 (Sahoo et al., 2018). To 
simulate the effect of experimental noise on PUF performance owing to 
the temperature and supply voltage fluctuations (i.e., noisy system), we 
used an additive noise with a normal distribution around N (0, σ2

noise). 
Thus, each delay component of the PUF behaves a normal distribution 
around N (10, σ2 +σ2

noise) in the presence of noisy system, where σnoise =

σ/2, and the σ is the standard deviation of delay distribution of delay 
component. The simulation is performed on both 32-bit and 64-bit 
models of the DC-PUF and 10 instances is considered for reliability 
analysis, where each instance was evaluated 30 times with 2 × 104 

CRPs. Also, to control the reliability of DC-PUF, we performed the same 
simulation for different authentication rounds R = {1,2, .., 6} and 
different percentage of response bits S = {20,30, 40,50} are consid-
ered for forming the dependency chain. Fig. 10 shows the reliability of 
32-bit and 64-bit DC-PUF for different S values during different 
authentication rounds R . 

In order to better control the reliability of the DC-PUF and lower the 
chance of propagation of flipped bit, one simple solution is to reduce the 
authentication rounds and also decrease the number of response bits 
that are selected for the dependency chain, albeit with trade-offs in 
terms of prediction accuracy and randomness. In practice, there is no 
need to continue the dependency chain forever and after some successful 
sessions the chain can be reset and recreated in both sides for preventing 
instability propagation to the next authentication rounds. It is concluded 
from Fig. 10 that the authentication reliability for 32-bit and 64-bit DC- 
PUF is about 97.52% and 90.64%, respectively, during four authenti-
cation rounds when 30% of the response bits are selected for 

Table 5 
A qualitative comparison of different PUF models In terms of hardware 
complexity, accuracy, obfuscation, and dependency types.  

Ref Hardware 
Complexity 

Prediction 
Accuracy 

Obfuscation 
Type 

Dependency 
Type 

DC-PUF Low Low R(L1)+ DC Temporal+
Spatial 

R–PUF (Ye 
et al., 2016) 

medium High R(L2) Spatial 

OB-PUF (Gao 
et al., 2016) 

High High R(L1) Spatial 

XOR-PUF ( 
Majzoobi 
et al., 
2008b) 

Very High Very High Redundancy None 

Arbiter-PUF ( 
Lim et al., 
2005) 

High Very High None None  

Fig. 10. Reliability of 32-bit and 64-bit DC-PUF during different authentication 
rounds (R ). 
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dependency chain. In this case, the prediction accuracy of the PUF 
instance increases to 60.29% for 64-bit DC-PUF according to the results 
of Fig. 8. In case of 20% selection of response bits, the reliability for 32- 
bit and 64-bit in four authentication rounds are 98.11% and 91.52%, 
respectively. Moreover, the prediction accuracy in this configuration is 
about 63.51% for 64-bit DC-PUF. It is evident from Fig. 10, as the 
authentication rounds and the number of response bits selected for the 
chain formation decreases, the reliability significantly improves, albeit 
at the expense of increasing the prediction accuracy during modeling 
attacks. The hardware complexity is also reduced when the number of 
selected response bits are decreased due to the reduction in the number 
of DC-elements. 

Another solution that can remarkably augment the reliability owing 
to the PUF instability is to change the way the dependency chain is 
formed in the server side. One option is to form the dependency chain at 
the server side based on the response generated by the server to cancel 
the effect of channel noise on the identification accuracy. However, to 
cancel the effect of PUF instability itself and also avoid propagating 
inconsistent response bits, the chain alternatively can be formed at the 
server side based on the receiving response generated at the client side. 
It should be noted that this choice mainly depends on the channel pa-
rameters and the environment conditions where the PUF-enabled device 
is operating. Also, the change in the way of forming the dependency 
chain at the server side can be configurable in software, thus no change 
is required in the device at field. 

To elaborate the reliability in terms of channel interferences, we 
need to explain the authentication flow again. In this case, it is assumed 
that the inherent PUF stability is guaranteed and the server contains an 
accurate trained model or reference lookup table including the 
challenge-response pairs for each device installed in the field. In fact, 
before the installation, the server needs to create this lookup table for 
the authentication flow. However, due to the one-bit random used in the 
client-side, the server must generate two possible responses for each 
challenge and compare them with the receiving response. The receiving 
response may differ from the response generated in each side due to the 
presence of channel interference and noise. Information required for 
authentication in every session including the device ID (the first previ-
ous response) and the other previous response from the successful re-
quests is available on the server as well as the client side. For each 
session, the server keeps track of the previous authenticated response to 
form a dependency chain. Note that to ensure the reliability, we need to 
properly keep track of the dependency chain in both server and client 
sides. That is, the generated response for each challenge can be the same 
at both sides if the client is an authorized node. The first previous 
response is initialized as the device ID in both sides, which is sent by 
each client at the beginning of the session. In the next successful 
authorized session, the previous response is updated with the current 
response generated by that side or remains the same when the authen-
tication is rejected. In fact, the dependency chain continues to grow in 
each successful session and stops growing when the session is rejected. 
That is, the breach into the proposed authentication mechanism gets 
harder as time goes by, since the attacker are not aware of the history of 
the previous successful sessions. 

In each authentication session, the device sends the request including 
the device ID to the server. The server looks up the last authenticated 
response for this device and sends back a random or specified challenge 
to the client. Next, the client generates a response based on the incoming 
challenge, the random bit, and the previous authenticated response. At 
the server side, the server generates two possible responses based on the 
transmitted challenge and the last authenticated response, and 
compared with the receiving response. If the similarity between these 
two responses and receiving response is less than a pre-defined margin, 
the authentication is passed, the current generated response by the 
server with less similarity to the receiving response is set as the last 
successful response and the authentication result sent back to notify the 
client. At the client side, the generated response by the client is set to the 

previous response when the authentication is passed as well. So, the last 
successful response in both authorized sides is equally updated, so does 
the dependency chain. 

A key point in the reliability analysis in terms of channel interference 
for the proposed authentication methodology is that the dependency 
chain remains the same at both sides of the server and authorized nodes 
and updated accordingly in each successful session, since the receiving 
response can be used to form the dependency chain at the server side. In 
fact, the bit-error rate in each authentication session is not propagated to 
the next sessions as the previous response in each side is updated based 
on the same PUF model, input challenge, and current authenticated 
response generated in that side. It is expected that in the first session, the 
response generated by the device and one of the responses generated by 
server is equal when the PUF model, ID, and the incoming challenge are 
similar. So, the chain starts with the same result in both sides and this 
equality continues to propagate to the next sessions. As a result, the 
proposed authentication flow does not let the bit-error be accumulated 
in the dependency chain and affects the next authentication sessions. 
Worthwhile to note that if an unauthorized access in somehow is 
considered true to access by our method, it does not mean it can 
continue to access forever and the breach is permanent. It is because, our 
results show that the attacker cannot predict the response more than 
58% even using a sophisticated SNN model and the false access is mainly 
due to the channel disturbance and the Bit-Error-Rate (BER). In other 
words, the BER may help the attacker to somehow resemble the response 
something similar to the original response by the server. Even so, in this 
case the dependency chain is not similar in both sides as the response in 
server is updated with the legitimate response generated by the server 
rather than the receiving response. Therefore, the next requests after a 
successful request of a malicious node will likely fail due to inconsis-
tency between the dependency chains. Important to note that our results 
show that the percentage of the successful sessions coming from the 
unauthorized node that are wrongly considered authorized by the server 
is zero for less than 20 number of mismatches in bits of the receiving 
response. 

Besides the channel interference, the other terms affecting the reli-
ability includes the PUF strength, the PUF randomness, and the accuracy 
of the model used in the server side. The PUF strength can be evaluated 
as the uniformity, uniqueness, and its resistance against machine 
learning (ML) attacks. The uniformity and the uniqueness metrics are 
already reported in the experimental section, where these metrics are 
close to the ideal values for the proposed PUF. Moreover, the resistance 
against different ML attacks is also assessed with only 58% of prediction 
accuracy for the proposed PUF, which is far better than the previous 
attacks on already-existing PUF structures as reported by Table I and the 
chart shown in Fig. 9. In terms of PUF randomness, unlike the way 
proposed in (Konigsmark et al., 2016), (Ye et al., 2016), we only use a 
single bit of randomness to simplify the authentication process at the 
server side, while hardening the cloning process for attacker. Unlike 
(Konigsmark et al., 2016), (Ye et al., 2016), this single bit is sufficient in 
our method as we not only rely on the PUF randomness, but also on the 
dependency chain (i.e., temporal correlation between consecutive re-
sponses) to harden the cloning process while preventing to predict the 
PUF model using ML attacks. In terms of the accuracy of the model used 
in the server, the server can use a lookup table to search for the correct 
responses (two possible response for each challenge) corresponding to 
each challenge and compared with the receiving response. 

To evaluate the efficiency of the proposed authentication method, 
the IEEE 802.15.4 standard is taken into account as the physical layer 
(Rührmair et al., 2013). This standard defines the data communication 
using low-rate, low-power, and low-complexity short-range radio fre-
quency transmission in a wireless personal area network (WPAN) which 
is highly suitable for resource-constrained IoT devices. We implemented 
the physical layer of this standard using the Communication Toolbox in 
MATLAB software with the O-QPSK modulation at 2450 MHz band. 
Also, the effect of channel disturbance on the authentication reliability is 
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measured to obtain the False-Positive and False-Negative rates. In our 
experiments, 1000 IoT nodes with five consecutive authorized sessions 
is assumed to model the dependency chain. To compare the 
False-Positive and False-Negative rates in the presence of channel vari-
ations during data transmission, the Eb/N0 parameter is measured, 
where Eb is the signal energy associated with each data bit and N0 is the 
noise spectral density. It is proved that as the noise spectral density in-
creases, so does the BER, since the receiving response affects more by the 
channel variations. The False-Negative rate is an important factor in 
authentication reliability which defines the percentage of the authorized 
sessions for different nodes that are wrongly denied by the server. 
Fig. 11 shows the False-Negative rate in the presence of channel varia-
tions for IEEE 802.15.4 standard with O-QPSK modulation at 2450 MHz 
frequency. To include the channel noise and improving the authenti-
cation reliability, we consider a pre-defined range of mismatch in bits of 
the receiving response in terms of the Hamming-Distance as depicted in 
Fig. 11. It is concluded from Fig. 11 that the average False-Negative rate 
in the proposed authentication is around 1% when 3-bit mismatches (i. 
e., HD = 3) is specified at the receiver side. Nevertheless, the HD = 2 can 
also be recommended for authentication in less noisy channels. Note 
that the negative values of Eb/N0 represents the cases where the noise 
spectral density gets larger than the signal energy associated with each 
data bit. Therefore, the largest negative value of Eb/N0 highlights the 
worst-case scenario in our experimental. In case of HD = 2, the average 
of False-Negative rate is the same as 1% by excluding the Eb/ N0 = −

2 dB. It is expected that the increase in HD also increases the 
False-Positive rate, as the attacker can hide the prediction inaccuracy in 
the mismatch bits of the receiving response which is caused by the 
channel variations. 

The False-Positive rate is defined as the percentage of the unautho-
rized sessions coming from the malicious nodes that are wrongly passed 
by the server. To measure the False-Positive rate, it is assumed the 
attacker has full access to the network between the client and the 
authorization servers and therefore is aware of the incoming challenges, 
the previous outgoing responses, and the ID of an authorized device. 
Moreover, the attacker can use the challenge-response pairs to model 
our DC-PUF and to conduct a ML attack scenario. The experimental 
results signify that the accuracy of this model cannot be reached more 
than 58%. By taking this assumption into account Fig. 12 shows the 
False-Positive rate versus the HD in the presence of channel variations. It 
is apparent from Fig. 12 that False-Positive rate is around zero per-
centage for HD less than 20 and after that it increases exponentially. 

Also, the False-Positive rate is less affected by the channel variations as 
the Bit-Error-Rate (i.e., the number of bit errors in the receiving message 
divided by the total number of transferred bits) in communication 
channel can help the attacker to correct the false prediction in some bits 
as well as to subvert the correct prediction in that of the other bits. 
According to Figs. 11 and 12, for HD more than 6 and less than 20, both 
the False-Negative and False-Positive rates are zero. As a result, we can 
recommend the higher value of HD to decrease the False-Negative rate, 
while the False-Positive rate remains in zero percentage. value of HD to 
decrease the False-Negative rate, while the False-Positive rate remains in 
zero percentage. 

5. Conclusion 

In this paper, a new PUF-based authentication mechanism called DC- 
PUF is proposed. The main goal was to weaken the correlation between 
the challenge-response pairs (CRPs) to harden or significantly postpone 
the replication or cloning process, which can be exploited by the 
attacker. Accordingly, we take advantage of the dependency chain 
mechanism which obfuscates the relation between CRPs so that the 
attacker cannot predict any relevant dependency. The experimental 
results imply that even a sophisticated CNN network with a large 
number of data-set cannot successfully clone the PUF model with more 
than 58% of accuracy. This accuracy is considerably larger for that of the 
other PUFs which resulted in more than 95% accuracy when the CNN- 
based attack is conducted. Moreover, the DC-PUF structure incurs a 
less hardware overhead compared to the existing designs, and the uni-
formity and uniqueness remain almost the same as the ideal value. The 
reliability of the proposed DC-PUF in terms of PUF instability is also 
evaluated and can be controlled by adjusting the number of authenti-
cation rounds and the percentage of response bits that are selected for 
the dependency chain. Moreover, the results showed that the average of 
the False-Negative rate of 1% is obtained for HD = 3 in the presence of 
channel variations, while the False-Positive rate remains in zero per-
centage. This method provides a lightweight mechanism to securely 
authenticate the resource constraint IoT devices while resisting against 
sophisticated machine-learning attacks. 
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